Технологии интеллектуальной системы
Работа добавлена: 2016-05-16





Технологии ИИ

Воспользуемся определением «интеллектуальной системы» проф. Д.А. Поспелова: «Система называется интеллектуальной, если в ней реализованы следующие основные функции:

Перечисленные функции можно назвать функциями представления и обработки знаний, рассуждения и общения. Наряду с обязательными компонентами, в зависимости от решаемых задач и области применения в конкретной системе эти функции могут быть реализованы в различной степени, что определяет индивидуальность архитектуры.

На рис. 5.19 в наиболее общем виде представлена структура интеллектуальной системы в виде совокупности блоков и связей между ними.

База знанийпредставляет собой совокупность сред, хранящих знания различных типов. Рассмотрим кратко их назначение.

База фактов(данных) хранит конкретные данные, абаза правил— элементарные выражения, называемые в теории искусственного интеллекта продукциями.База процедурсодержит прикладные программы, с помощью которых выполняются все необходимые преобразования и вычисления.База закономерностейвключает различные сведения, относящиеся к особенностям той среды, в которой действует система.База метазнаний(база знаний о себе) содержит описание самой системы и способов ее функционирования: сведения о том, как внутри системы представляются единицы информации различного типа, как взаимодействуют различные компоненты системы, как было получено решение задачи.

База целейсодержит целевые структуры, называемые сценариями, позволяющие организовать процессы движения от исходных фактов, правил, процедур к достижению той цели, которая поступила в систему от пользователя, либо была сформулирована самой системой в процессе ее деятельности в проблемной среде.

Управление всеми базами, входящими в базу знаний, и организацию их взаимодействия осуществляет система управления базами знаний. С ее же помощью реализуются связи баз знаний с внешней средой. Таким образом, машина базы знаний осуществляет первую функцию интеллектуальной системы.

Выполнение второй функции обеспечивает часть интеллектуальной системы, называемая решателем и состоящая из ряда блоков, управляемых системой управления решателя. Часть из блоков реализует логический вывод. Блок дедуктивного вывода осуществляет в решателе дедуктивные рассуждения, с помощью которых из закономерностей из базы знаний, фактов из базы фактов и правил из базы правил выводятся новые факты. Кроме этого данный блок реализует эвристические процедуры поиска решений задач, как поиск путей решения задачи по сценариям при заданной конечной цели. Для реализации рассуждений, которые не носят дедуктивного характера, т.е. для поиска по аналогии, по прецеденту и пр., используютсяблоки индуктивного и правдоподобного выводов. Блок планированияиспользуется в задачах планирования решений совместно сблоком дедуктивного вывода.Назначениеблока функциональных преобразованийсостоит в решении задач расчетно-логического и алгоритмического типов.

Третья функция — функция общения — реализуется как с помощью компоненты естественно-языкового интерфейса, так и с помощью рецепторов и эффекторов, которые осуществляют так называемое невербальное общение и используются в интеллектуальных роботах.

В зависимости от набора компонентов, реализующих рассмотренные функции, можно выделить следующие основные разновидности интеллектуальных систем:

Интеллектуальные информационно-поисковые системыявляются системами взаимодействия с проблемно-ориентированными (фактографическими) базами данных на естественном, точнее ограниченном как грамматически, так и лексически (профессиональной лексикой) естественном языке (языке деловой прозы). Для них характерно использование, помимо базы знаний, реализующей семантическую модель представления знаний о проблемной области, лингвистического процессора.

Экспертные системыявляются одним из бурно развивающихся классов интеллектуальных систем. Данные системы в первую очередь стали развиваться в математически слабоформализованных областях науки и техники, таких как медицина, геология, биология и др. Для них характерна аккумуляция в системе знаний и правил рассуждений опытных специалистов в данной предметной области, а также наличие специальной системы объяснений.

Расчетно-логические системыпозволяют решать управленческие и проектные задачи по их постановкам (описаниям) и исходным данным вне зависимости от сложности математических моделей этих задач. При этом конечному пользователю предоставляется возможность контролировать в режиме диалога все стадии вычислительного процесса. В общем случае, по описанию проблемы на языке предметной области обеспечивается автоматическое построение математической модели и автоматический синтез рабочих программ при формулировке функциональных задач из данной предметной области. Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования.

В последнее время в специальный класс выделяются гибридные экспертные системы. Указанные системы должны вобрать в себя лучшие черты как экспертных, так и расчетно-логических и информационно-поисковых систем. Разработки в области гибридных экспертных систем находятся на начальном этапе.

Наиболее значительные успехи в настоящее время достигнуты в таком классе интеллектуальных систем, как экспертные системы (ЭС).

ЭС называют вычислительную систему использования знаний эксперта и процедур логического вывода для решения проблем, которые требуют проведения экспертизы и позволяют дать объяснение полученным результатам.

ЭС обладает способностями к накоплению знаний, выдаче рекомендаций и объяснению полученных результатов, возможностями модификации правил, подсказки пропущенных экспертом условий, управления целью или данными. ЭС отличают следующие характеристики: интеллектуальность, простота общения с компьютером, возможность наращивания модулей, интеграция неоднородных данных, способность разрешения многокритериальных задач при учете предпочтений лиц, принимающих решения (ЛПР), работа в реальном времени, документальность, конфиденциальность, унифицированная форма знаний, независимость механизма логического вывода, способность объяснения результатов. В настоящее время можно выделить следующие основные сферы применения ЭС: диагностика, планирование, имитационное моделирование, предпроектное обследование предприятий, офисная деятельность, а также некоторые другие.

Важное место в теории искусственного интеллекта (ИИ) занимает проблема представления знаний. В настоящее время выделяют следующие основные типы моделей представления знаний:

1.  Семантические сети, в том числе функциональные;

2.  Фреймы и сети фреймов;

3.  Продукционные модели.

Семантические сетиопределяют как граф общего вида, в котором можно выделить множество вершин и ребер. Каждая вершина графа представляет некоторое понятие, а дуга — отношение между парой понятий. Метка и направление дуги конкретизируют семантику. Метки вершин семантической нагрузки не несут, а используются как справочная информация.

Различные разновидности семантических сетей обладают различной семантической мощностью, следовательно, можно описать одну и ту же предметную область более компактно или громоздко.

Фреймомназывают структуру данных для представления и описания стереотипных объектов, событий или ситуаций. Фреймовая модель представления знаний состоит из двух частей:

Существует два типа фреймов:

В общем виде фрейм может быть представлен следующим кортежем:

<ИФ, (ИС, ЗС, ПП), ..., (ИС, ЗС, ПП)>,

где ИФ — имя фрейма; ИС — имя слота; ЗС — значение слота; ПП — имя присоединенной процедуры (необязательный параметр).

Слоты — это некоторые незаполненные подструктуры фрейма, заполнение которых приводит к тому, что данный фрейм ставится в соответствие некоторой ситуации, явлению или объекту.

В качестве данных фрейм может содержать обращения к процедурам (так называемые присоединенные процедуры). Выделяют два вида процедур: процедуры-демоны и процедуры-слуги. Процедуры-демоны активизируются при каждой попытке добавления или удаления данных из слота. Процедуры-слуги активизируются только при выполнении условий, определенных пользователемприсоздании фрейма.

Продукционные модели — это набор правил вида «условия — действие», где условиями являются утверждения о содержимом базы данных, а действия представляют собой процедуры, которые могут изменять содержимое базы данных.

Формально продукция определяется следующим образом;

(/);Q;Л С; Л -»В;N,

где (0 — имя продукции (правила);Q— сфера применения правила;Р —предусловие (например, приоритетность); С—предикат (отношение);А->В— ядро;N —постусловия (изменения, вносимые в систему правил).

Практически продукции строятся по схеме «ЕСЛИ» (причина или иначе посылка), «ТО» (следствие или иначе цель правила).

Полученные в результате срабатывания продукций новые знания могут использоваться в следующих целях:




Возможно эти работы будут Вам интересны.

1. Базовые информационные технологии: технологии искусственного интеллекта. Определение, классификация и структура интеллектуальной системы. Модели представления знаний. Экспертные системы (ЭС) и задачи, решаемые ими. Разновидности ЭС, инструментальные средс

2. Информационные технологии организационного управления (Корпоративные информационные технологии). Основные концепции управления производством. Достоинства и недостатки системы “клиент-сервер”. Особенности систем Интранет, их достоинства, используемые откры

3. Архитектура интеллектуальной сети

4. Аудит интеллектуальной собственности

5. Результаты интеллектуальной деятельности: понятие, виды

6. Информационные технологии как сфера услуг, их классификация. Понятие информационной технологии и этапы ее развития

7. Базовые информационные технологии: телекоммуникационные технологии. Разновидности архитектур компьютерных сетей, их структура. Основные компоненты Интернета

8. Базовые информационные технологии: технологии защиты информации

9. Банковские системы и их роль в национальной экономике. Особенности банковской системы Беларуси

10. Эволюция выделительной системы. Пороки развития мочеполовой системы